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Résumé 

Ce travail est conjoint à deux projets locaux MaDAMe_R2 et international (Australie - 
États-Unis) MURMUR à partir de LaMCoS. Le but de mon projet est principalement d'étudier 
l'effet de la variabilité et des incertitudes sur l'optimisation topologique des structures. 

Dans ce domaine, il nous sera demandé de rechercher à l'échelle globale pour optimiser 
les structures macroscopiques sous différentes charges. L'analyse de la variabilité et des 
incertitudes concernera initialement le matériau, le chargement. L'effet de la topologie initiale 
sera pris en compte dans une seconde étape. L'étude sera basée sur une approche non 
intrusive couplant les résultats du modèle déterministe (sans variabilité) ainsi que des 
techniques de propagation des incertitudes. 

 
Mots clé : Optimisation de la Topologie, Matériau Isotrope Solide avec Pénalisation, 
Expansion du Chaos Polynomial, Simulation de Monte-Carlo 
 
Summary: 

This work is joint to two local projects MaDAMe_R2 and international (Australia - United 
States) MURMUR starting at LaMCoS. The goal of my project is mainly to study the effect of 
variability and uncertainties on the topological optimization of structures. 

In this subject, we will be requested to research on a global scale to optimize 
macroscopically structures under different loadings. The analysis of variability and 
uncertainties will initially concern the material, the loading. The effect of geometrical 
uncertainties of the material distribution will be studied in a second step. The study will be 
based on a non-intrusive approach coupling the results of the deterministic model (without 
variability) as well as propagation techniques of the uncertainties. 

 
Key words: Topology Optimization, Solid Isotropic Material with Penalization [1], Polynomial 
Chaos Expansion, Monte-Carlo Simulation 
 
Nomenclature 
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𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 
F 
U 
{f} 
V 
 

Length of the design domain 
Width of the design domain 
Thickness of the design domain 
The Young’s Modulus 
The material distribution matrix 
The Poisson’s ratio 
The minimum density of one element, in general 1e-3 
The maximum density of one element, in general 1 
The load 
The displacement of a node 
The unit vector of load 
The volume real 
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K 
D 
λ 
q 
θ 
ξ 
ξ𝑐𝑐 
e 
𝑒𝑒𝑚𝑚 
𝑒𝑒0 
ψ 
d 
p 
N 
RSS 
n(i|p) 
m(i|p) 
l 

The stiffness matrix 
The stress matrix 
The Lagrange multiplier 
The design parameter for SIMP 
The load orientation 
The stochastic variable 
The collocation points 
The energy polynomial 
The coefficient of the Legendre polynomial basis in energy polynomial 
The first coefficient 
Legendre polynomial basis 
The given dimension of polynomial chaos expansion 
The order of polynomial chaos expansion 
The number of unknown polynomial coefficients 
Residual sum of squares 
The number of samples of MC in the i-th energy distribution section 
The number of samples of PCE in the i-th energy distribution section 
The number of energy distribution section in histogram 
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1/ INTRODUCTION: 
In recent years, the use of architectural materials has increased considerably in various 

industrial sectors (aeronautics, building, transport, nuclear, ...) thanks to (i) a better 
combination of several physical properties, (ii) improved performance of some existing 
materials. Topology optimization technology can greatly improve the efficiency of the use of 
materials. 

Generally, structural topology optimizations are conducted in a deterministic manner, 
known as deterministic topology optimization (DTO) [1], where the design is determined without 
considering various sources of uncertainties. However, uncertainties are unavoidably 
observed in real-world applications due to insufficient knowledge, manufacturing errors, 
changeable environment, and so forth. This may lead to the vulnerable optimum structure or 
infeasible topologies due to the fluctuation of the structure performance. Therefore, there is a 
strongly increasing requirement to take the effect of uncertainty into consideration for optimal 
topologies in structural design. 

In the case of uncertainty parameters defining probability distributions, the probabilistic 
description of the performance function is usually characterized by its statistical quantities such 
as mean value and standard deviation. In this scenario, a fundamental issue associated with 
robust topology optimization (RTO) [2] procedure is to calculate the statistical moments 
accurately and efficiently.  

Probabilistic uncertainty propagation methods are often used in the analysis of a physical 
system to quantify the effects of uncertainties on estimated statistics of the system response. 
Such methods include the Monte-Carlo Simulation (MCS) method [5], the Stochastic Response 
Surface Method (SRSM) [3][4] and the Spectral Stochastic Finite Element Method (SSFEM) [5][6].  

MCS are the most widely used sampling-based methods in robust design due to their 
accuracy and easy implementation but are time-consuming. Aside from the aforementioned 
MCS-method, SFEM require significant modification of existing deterministic numerical codes 
and become impossible for most engineers with no access to the source code of proprietary 
commercial software. SRSM, an alternative to the MCS method, using polynomial chaos is 
convergent in the mean-square sense, and replaces the numerical model with an 
approximated less-expensive surrogate model, which can be used to estimate the system 
response and analyze uncertainty propagation. Herein this article uses the SRSM.  

The basic idea of SRSM is to approximate model inputs and outputs in terms of random 
variables such as standard normal variables by a Polynomial Chaos Expansion (PCE) [4][7][8]. 
For the solution of the PCE coefficients, the PCE method can be divided into intrusive and 
non-intrusive techniques. In the intrusive PCE method, the PCE coefficients are solved by the 
stochastic Galerkin projection [5], which requires access to the system equations and results in 
more complex system equations. Furthermore, if the mathematical model involves complex 
non-linearities, the Galerkin procedure can be a challenging task and difficult to implement. To 
overcome these difficulties, non-intrusive methods described below are useful. 

In the non-intrusive PCE method, the system equations are treated as a black box and 
the calculation of PCE coefficients is based on a set of deterministic simulations, which is more 
amenable in terms of computational cost for large-scale models and in terms of modelling 
complexity for iterative methods. To calculate the PCE coefficients, two non-intrusive 
approaches can be used: the spectral projection method and the collocation-based method. 
The spectral projection method projects the output results into the base polynomials using an 
orthogonality property and multidimensional integral, which involves random sampling, 
quadrature, Strouds cubature formula, or sparse grid approaches.[5] The collocation-based 
method uses a linear regression algorithm that approximates the PCE coefficients to match 
the output results from the deterministic model at a set of collocation points using the least 
square algorithm, which is more straightforward to implement than the spectral projection. 

This project studies the effect of the random variable of load orientation on a robust 
configuration design using the non-intrusive collocation-based PCE. Since the collocation-
based method introduces additional approximations (least-square at the collocation points), its 
validation is performed with comparison to MCS in terms of accuracy and computational cost. 
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The report is organized as follows: A brief description of the deterministic topology 
optimization problem is presented in Section 2. In Section 3, the influence of parameter on the 
result is studied. The variability analysis of load orientation with MCS and geometry with 
CBSRSM are respectively illustrated in Section 4 and in Section 5. Conclusions are discussed 
in Section 6. 

2/ TOPOLOGICAL OPTIMISATION PROBLEM 

2.1/ Example under concern  
This stochastic topology optimization example is studied on a simply supported beam. 

The design domain, the boundary, and loading conditions are illustrated in Figure 1. The 
dimensions of the beam are 𝐿𝐿 = 90mm and 𝐻𝐻 = 30mm and the thickness is 𝑇𝑇 = 1mm. The 
isotropic material is assumed to have Young’s modulus 𝐸𝐸0 of 10MPa and Poisson’s ratio ν of 
0.30. A single random load case is considered whose orientation is assumed to follow a 
uniform distribution with the interval of [−3𝜋𝜋/4, −𝜋𝜋/4]. The objective is to maximize the overall 
stiffness, which is equivalent to minimize the compliance. In robust design, the optimization 
problem consists in finding the optimal value of the random variable so that this regression 
equation has a minimum value there. The design domain is discretized by 2700 (90 × 30) 
four-node linear elements. 

2.2/ Solid Isotropic Material with Penalization method [1] 

Solid Isotropic Material with Penalization (SIMP) method uses the material distribution 
method and is based on the numerical calculation of the globally optimal distribution of the 
density of material ρ which is the design variable. For an interpolation scheme that properly 
penalizes intermediate densities (ρ in ]0,1[) the resulting 0-1 (or black and white) design is 
actually the primary target of our scheme. The optimality criteria method for finding the optimal 
topology of a structure constructed from a single isotropic material then consists of the 
following steps: 

Pre-processing of geometry and loading: 
-  Choose a suitable reference domain (the ground structure) that allows for the definition 

of surface tractions, fixed boundaries, etc. 
-  Choose the parts of the reference domain that should be designed, and other parts that 

should be left as solid domains or voids. 
-  Construct a finite element mesh for the ground structure, which should be fine enough 

in order to describe the structure in a reasonable resolution bit-map representation.  
-  Construct finite element spaces for the independent fields of displacements and the 

design variables. 
Optimization: 

Figure 1 - Design domain, boundary conditions, and loading 

conditions of a 2D simply supported beam. 

F 
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Compute the optimal distribution over the reference domain of the design variable q. The 
optimization uses a displacement based finite element analysis and the optimality update 
criteria scheme for the density. The structure of the algorithm is: 

-  Make initial design, e.g., homogeneous distribution of material. The iterative part of the 
algorithm is then: 

-  For this distribution of density, compute by the finite element method the resulting 
displacements and strains. 

-  Compute the compliance of this design. If only marginal improvement (in compliance) 
over last design, stop the iterations. Else, continue. For detailed studies, stop when necessary 
conditions of optimality are satisfied. 

-  Update the density matrix, based on the equation (3). This step also consists of an inner 
iteration loop for finding the value of the Lagrange multiplier λ for the volume constraint.  

-  Repeat the iteration loop. 
For a case where there are parts of the structure which are fixed (as solid and/or void) the 

updating of the design variables should only be invoked for the areas of the ground structure 
which are being redesigned (reinforced). 

Post-processing of results: 
-  Interpret the optimal distribution of material as defining a shape, for example in the 

sense of a CAD representation. 
 Herein the SIMP program is considered as a black box, after the position of the 

concentrate load and boundary condition are defined. The inputs which can be modified are 
only four variables, load orientation, load amplitude, Young’s modulus and Poisson’s ratio. 

In general, the topology optimization problem aims to obtain a design domain determined 
by the objective function. 

 

2.3/ Numerical results 
The deterministic topological optimization results caused by different inputs are shown in 

Figure 2 and Figure 3. The Figure 2 shows these configurations caused by different 
Poisson’s ratio v∈(0.0 , 0.5) when the Young’s Modulus is E=10MPa, the load amplitude 
F=10N, the load orientation θ=π/2. With the same the Young’s Modulus E=10MPa, load 
amplitude F=10N, and a Poisson’s ratio v=π/2, different load orientation θ∈[π/4 , 3π/4] leads 
to the configurations in the Figure 3. 

3/ Parametric studies 

3.1/ Influence of Young’s modulus and load amplitude 
According to the performance function, we found that the Young's modulus and the load 

amplitude have a linear relationship with the compliance, so we consider that they would not 
have any effect on the optimization result, which has been proved by experiments. 

�
min
𝜌𝜌

  𝑓𝑓(ρ)=𝐹𝐹𝑇𝑇𝑈𝑈 = 𝐹𝐹{𝑓𝑓}𝑇𝑇𝑈𝑈 = 𝐹𝐹2{𝑓𝑓}𝑇𝑇𝐾𝐾−1{𝑓𝑓} = ∑ 𝐸𝐸𝑒𝑒(ρ)𝑢𝑢𝑒𝑒𝑇𝑇𝑘𝑘𝑒𝑒𝑢𝑢𝑒𝑒
𝑁𝑁𝑒𝑒
𝑒𝑒=1

𝑠𝑠. 𝑡𝑡.     KU = F,   𝑉𝑉 = ∑ 𝜌𝜌𝑒𝑒𝑉𝑉𝑒𝑒 ≤ 𝑉𝑉∗,𝑒𝑒∈𝑁𝑁      𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜌𝜌𝑒𝑒 < 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

       (1) 

 

⎩
⎪
⎨

⎪
⎧K(ρ) = ∑Ke(ρ) = ∑∫BTDe(ρ)B dω

De(ρ) = Ee(ρ)
1−v2

�
1 v 0
v 1 0
0 0 1−v

2

�

𝐸𝐸𝑒𝑒(𝜌𝜌) = 𝜌𝜌𝑒𝑒
𝑞𝑞𝐸𝐸𝑜𝑜

      (2) 

 
𝜌𝜌𝑒𝑒(k+1)=𝜌𝜌𝑒𝑒(𝑘𝑘) · λ−1𝑞𝑞𝜌𝜌𝑒𝑒

𝑞𝑞−1𝐸𝐸𝑜𝑜𝑢𝑢𝑒𝑒𝑇𝑇𝑘𝑘𝑒𝑒𝑢𝑢𝑒𝑒 (OCUpdate)    (3) 
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3.2/ Influence of Poisson’s ratio  
Figure 2 indicates that the Poisson's ratio has almost no effect on topological optimization 

of structures.  
Although the stress matrix is a non-linear function of the Poisson's ratio as shown in 

equation (2), in the OCUpdate process, the new density is calculated using the same stress 

Figure 2 – Influence of Poisson’s ratio 

Figure 3 – Influence of load orientation 
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matrix for each element. Therefore, the results of topology optimization have not changed 
substantially. However, in detail, Poisson's ratio can be considered as a filter because a larger 
Poisson’s ratio can avoid the smaller structures such as small holes or small branches, so that 
the outline of the structure becomes clearer 

3.3/ Influence of load orientation 
Figure 3 shows that the load orientation has a great influence on the topology optimization 

of the structure. 
As the equation (1) shows, the performance function is the product of the applied load and 

the displacement in the direction of the load, which is also the sum of the deformation energy 
of each element. Therefore, different load orientations result in different unit load vectors, and 
unit vectors in different directions let each element have a different deformation. Subsequently, 
in the OCUpdate process (equation 3), the new density matrix will change greatly, which means 
that the material distribution of the new structure has changed greatly compared to before. 

4/ Variability analysis of load orientation 

4.1/ Monte Carlo Simulations 
The Monte Carlo simulations (MCS) are the most widely used sampling-based methods 

in robust design due to their accuracy and easy implementation. Using MCS method herein, 
we sample randomly and uniformly 10,000 values in the load orientation distribution range 
([−3𝜋𝜋

4
,−𝜋𝜋

4
]) as the inputs of the determinist topological optimization problems. Solving them, 

we record each density matrix.  
Once a new density matrix is recorded, we compute the mean of it and all previous density 

matrices and then calculate respectively the deformation energies produced by applying these 
loads on the mean structure as well as the mean and standard deviation of these deformation 
energies. At last, we draw respectively the function curves of the error in mean and standard 
deviation of energy (using 10,000 realizations as the reference) along with the number of 
realizations in Figures 4 and 5. The reference result e∞ corresponds to the 10000 simulations 
result. 

4.2/ Numerical results 
 The Figures 4 and 5 indicate that MCS method has an excellent accuracy and both 

curves weaken the shock when the number of realizations reaches 1,000 and converge 
respectively to 2.03e-5 (mean) and 5.8e-6 (std) when the number of realizations reaches 4,000. 
It means that under the setting condition we can get the robust mean structure with 4000 
realizations, which is shown in Figure 6. Thus we can conclude that under such a random 
uniform distributed load, the expected deformation energy of the mean structure is 2.03 × 10−5 ，

with a standard variance of 5.81 × 10−6. Unfortunately, this structure is not the most ideal result 
because there is a large fuzzy area with its density between 0 and 1 in the configuration, which 
is not acceptable in the manufacturing process.  

5/ Variability analysis of the geometry 

5.1/ Random inputs of the problem 
 Normally, in the manufacturing process, it is inevitable that the material contains 
impurities, which will affect its performance. Usually this effect is a random distribution, so we 
use stochastic input to characterize this effect. The goal of the analysis of geometric 
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variability is to study the effect of this random distribution on the strain energy of the structure 
under load. 

The first step in the implementation of the SRSM is to represent all the stochastic inputs 
in terms of standard random variables (SRVs)[4]. Here we consider that the density of the 
structure obeys the uniform distribution and we thus have two models, the first: 

Figure 5 – The standard deviation of deformation energies converges to 5.8e-6 

Figure 4 – The mean of deformation energies converges to 2.03e-5 

Figure 6 – Mean structure 
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ρ(ξ, M) = ξ�̅�𝜌(𝑀𝑀) 
where ξ is the variable which is uniformly distributed and takes a value within [0.9,1], and �̅�𝜌(𝑡𝑡) 
is the density matrix of the optimization result for a given θ.  
The second model:  

ρ(ξ, M) = ρ�(M) + ξ 
where ξ is the variable which is uniformly distributed and takes a value within [-0.1,0.1], and 
�̅�𝜌(𝑡𝑡) is the same as above.  

5.2/ Probabilistic collocation method 
The output of an analysis model is clearly influenced by all of the inputs. Therefore, any 

general functional representation of uncertainty in model outputs should take into account 
uncertainties in all inputs. The stochastic method used here is the stochastic response surface 
method using collocation-based PCE (CBPCE). The uncertain output is explained by: 

e(ξ) = � 𝑒𝑒𝑗𝑗𝜓𝜓𝑗𝑗(ξ)
𝑁𝑁

𝑗𝑗=0
 

where the number of unknown polynomial coefficients is equal to N = ∑ 1
𝑠𝑠!
∏ (𝑑𝑑 + 𝑟𝑟)𝑠𝑠−1
𝑟𝑟=0

𝑝𝑝
𝑠𝑠=1 =

(𝑑𝑑+𝑝𝑝)!
𝑑𝑑! 𝑝𝑝!

− 1 with p the order of polynomial chaos and d the given dimension of PCE or the number 
of random variables of inputs ξ = (ξ1, ξ2 … ξ𝑑𝑑). The random inputs follow the uniform probability 
law and the base polynomials 𝜓𝜓𝑗𝑗 are mutually orthogonal. We use Legendre polynomials [9], 
which can be obtained as: 

𝜓𝜓(0) = 1 
𝜓𝜓(1) = 𝑥𝑥 

𝜓𝜓(𝑚𝑚) =
2𝑛𝑛 − 1
𝑛𝑛

𝑥𝑥𝜓𝜓(𝑚𝑚−1)(𝑥𝑥) −  
𝑛𝑛 − 1
𝑛𝑛

𝜓𝜓(𝑚𝑚−2)(𝑥𝑥) 
The first six Legendre polynomials are shown as Figure 7.  

The collocation-based method outputs are calculated at a set of collocation points ξ𝑐𝑐 =
(ξ1, ξ2 … ξ𝑙𝑙)  in the parameter space from the deterministic model. The following two criteria 
should be satisfied in the selection of collocation points. The first criterion is that the selected 
collocation points must be chosen as the roots of at least higher 1-order polynomial to capture 
the points from the region of high probability. The second criterion is that the collocation points 
should be selected such that the overall distribution of the collocation points is more symmetric 
with respect to the origin. If still more points are available, the collocation points are selected 

(6) 

(7) 

(5) 

Figure 7 – the first five Legendre polynomials 
 

(4) 
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randomly. 
For this reason that the probabilistic collocation method is inherently unstable, a 

regression analysis is proposed arising from the minimization of the least squares norm of the 
residual: 

min
ξ𝑐𝑐

�𝑒𝑒(ξ𝑐𝑐) −�𝑒𝑒𝑚𝑚𝜓𝜓𝑚𝑚(ξ𝑐𝑐)
𝑁𝑁

𝑚𝑚=0

�

2

 

It is often used to estimate the unknown coefficients in the polynomial chaos expansion. 
In the regression-based collocation method, the number of collocation points is selected in the 
same way as discussed previously but must be higher than the number of unknown coefficients 
to be estimated. In order to obtain robust estimates of the unknown coefficients, it should better 
be twice the number of unknown coefficients.  

5.3/ The first model: Numerical results and Comparisons with Monte Carlo method 
According to the PCE method, for finding the number of unknown polynomial coefficients N, 

the order of polynomial chaos p and the dimension of PCE M should be gotten firstly. Herein d is 
known as 1 due to the only one stochastic variable, but the order of polynomial chaos p is unknown. 
Therefore in order to find a suitable p-value, we should use the results of the MC method as a 
reference to judge the outcome of the PCE method for each feasible p-value.  

From Figure 8-(a1) obtained by using the method in Section 4, it is obvious that the energy 
mean converges to 2.2846e-6, when the number of random variable samples is greater than 10,000. 
In addition, according to the equation (6), the energy function can be also expressed as 

e(ξ) = 𝑒𝑒0 + � 𝑒𝑒𝑗𝑗𝜓𝜓𝑗𝑗(ξ)
𝑁𝑁

𝑗𝑗=1
 

where 𝑒𝑒0 happens to be the energy mean. Consequently, we obtain the energy mean for the first 
15 p-values by regression analysis and get their error relative to the above energy mean 2.2846e-
6. As shown in Figure 8-(b1), no matter how the p-value changes, the energy mean obtained by 
PCE method is unaffected and close to 2.2846e-6. Subsequently, shown in Figure 8-(c1), we obtain 
the residual sum of squares (RSS) of the probability distribution between PCE method and MC 
method by counting the number of samples in each energy distribution section, with the equation: 

RSS(p) = � �𝑛𝑛(𝑖𝑖|𝑝𝑝) −𝑚𝑚(𝑖𝑖|𝑝𝑝)�
2𝑙𝑙

𝑚𝑚=1
 

where l is the number of energy distribution section in histogram, n(i) and m(i) are respectively the 
number of samples of MC and PCE in the i-th energy distribution section. Combining these two 
figures, it is easy to find that the minimum p-value is 2, and the N-value is 2. 

According to the first criterion in the selection of collocation points, we should choose the roots 
of the 3-order Legendre polynomial as the value of the collocation points. Thus, the regression 
analysis (equation-8) is written as: 

�
1 𝑥𝑥1
1 𝑥𝑥2

1.5𝑥𝑥12 − 0.5
1.5𝑥𝑥22 − 0.5

1 𝑥𝑥3 1.5𝑥𝑥32 − 0.5
�

3×3

�
𝑒𝑒1
𝑒𝑒2
𝑒𝑒3
� = �

𝑒𝑒(𝑥𝑥1)
𝑒𝑒(𝑥𝑥2)
𝑒𝑒(𝑥𝑥3)

� 

Where 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3  are the roots, which value respectively ±0.7746,0 . 𝑒𝑒(𝑥𝑥1), 𝑒𝑒(𝑥𝑥2), 𝑒𝑒(𝑥𝑥3)  are 
structure deformation energies solved from the FEM Black-Box. 

The energy PCE is concluded as  𝑒𝑒(𝑥𝑥) = 2.2829 × 10−6 − 1.2035 × 10−7𝑥𝑥 + 6.3344 ×
10−9𝑥𝑥2 + O(𝑥𝑥3), which is drawn in Figure 8-(d1). As the result, the probability distribution function 
is displayed in Figure 8-(e1), where we conclude that the PCE method and the MC method provide 
the same accurate results. However, I must mention here that the MC method takes nearly 40 
minutes but the PCE method takes merely less than one second, which reflect the efficiency of the 
PCE method. 

Moreover, according to the first criterion in selection collocation points, the collocation points 
must be chosen as the roots of at least higher 1-order polynomial, and in general the number of 
collocation points greater than the number of unknown coefficients, the PCE is more robust. So we 
utilize the 8 collocation points arising from the roots of 8-order Legendre polynomial to fit a quadratic 
PCE which is 𝑒𝑒(𝑥𝑥) = 2.2829 × 10−6 − 1.2039 × 10−7𝑥𝑥 + 6.3403 × 10−8𝑥𝑥2 + O(𝑥𝑥3) . This equation 
has almost no difference with the former. Therefore, we think the 4-collocation-points PEC has 

(8) 

(11) 

(9) 

(10) 
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enough accuracy to approximate the nonlinear process, which also reflects that a second-order 
PCE is sufficient to describe the first model and the p-value of 2 is optimal. 

5.4/ The second model: Numerical results and Comparisons with Monte Carlo 
method 

The second model is different from the first model, because adding or subtracting directly 
a stochastic variable to the element density will make the density value out of the permitted 
range [0,1]. Therefore we make a regulation that the density of each element out of the 
permitted range is reset as the boundary value 0 or 1. Subsequently the same analysis process 
is implemented as shown in Figure 8-(a2), and the energy mean obtained from 10,000 
randomly selected samples is used as a reference. Figure 8-(b2) and Figure 8-(c2) are 
obtained by the above method, and the energy PCE could be written as 𝑒𝑒(𝑥𝑥) = 2.17 × 10−6 −
2.73 × 10−7𝑥𝑥 + 3.39 × 10−8𝑥𝑥2 + 9.19 × 10−8𝑥𝑥3 + 5.78 × 10−8𝑥𝑥4 − 1.10 × 10−7𝑥𝑥5 − 8.77 ×
10−8𝑥𝑥6 + 4.85 × 10−8𝑥𝑥7 + 4.13 × 10−8𝑥𝑥8 + O(𝑥𝑥8)  which is drawn in Figure 8-(d2). The 
probability distribution function is displayed in Figure 8-(e2). 

Observing Figure 8-(b2) and Figure 8-(c2), we know that once the order is greater than 8, 
the PCE method will have the same accuracy as the MC method, but we don’t know if this is 
due to the increase in the number of collocation points or the increase in the number of 
polynomial orders. Thus, as a comparative experimental, we specify that there is always 20 
collocation points for each p-value analysis, and the same analysis process is shown in Figure 
9. We can conclude that the more collocation points as used, the more accurate is the energy 
mean 𝑒𝑒0 in Equation (9) but the number of collocation points have no effect on the probability 
distribution function due to the reason that Figure 9-(b) has no difference from Figure 8-(c2). 
Consequently the 8-orders PCE is optimal to describe the second model. 

Compared to the Model 1, Model 2 has more compatibility with the physical environment 
and can produce accurate results. However, the order of his equation is too high, and the 
expression of the equation is extremely unstable because the coefficient of the high-order term 
is large and mutable. 

6/ Conclusion 
Uncertainties are unavoidably observed in real-world applications due to insufficient 

knowledge, manufacturing errors, changeable environment, and so forth. This may lead to the 
vulnerable optimum structure or infeasible topologies due to the fluctuation of the structure 
performance. Therefore, there is a strongly increasing requirement to take the effect of 
uncertainty into consideration for optimal topologies in structural design. The report aims to 
study the effect of variability and uncertainty on topological optimization of structures, which 
consists mainly of three parts: one is parametric studies, one is variability analysis of load 
orientation, and another is variability analysis of the geometry.  

In the first section, we have got some important conclusions that i) Young’s modulus and 
load amplitude have not any effect on the topological optimization of structures, ii) the 
Poisson's ratio has almost no effect on the optimization result, and iii) the load orientation has 
a great influence.  

In the second section, we used the Monte Carlo method to make the variability analysis of 
the geometry. Sampling randomly 10,000 load directions, we got the mean structure by solving 
the average of these 10,000 independent topological optimization results, which has a 
convergent mean and standard deviation of energy produced by applying uniformly and 
stochastically a load at it.   

In the third section, for a given configuration, the effect of changes in material density on 
the structural deformation energy is studied. This analysis presented the application of SRSM 
to the propagation of parameter uncertainty in the model. With compared to the MC method, 
CBSRSM has same accuracy and lower cost.  
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Figure 8 – (a) Evaluation of the number of realizations 
(b) Mean energy error between PCE and MC with 20 collocation points 
(c) Residual sum of squares of histograms of PCE&MC with 20 collocation points 
(d) Curve of Polynomial Chaos Expansion 
(e) Probability distribution function 
(f) Probability cumulative function 
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