工，方程求解器：
（1）一元有界非线性方程解：

\square
$\arg _{x \in x_{0}} f \operatorname{lun}_{0}$
（2）非线性系统求解器：
$x=f$ solve（afun，x_{0} ）：x x_{0} 为搜棠起点
$: f_{\text {un }}=0$ ，statt at x_{0} ．

II，优化器。
（1）一元有界非线性函数极小优化器：
$x=f \min b n d\left(\otimes f u n, x_{1}, x_{2}\right): x_{1}, x_{2}$ 为界．

$$
\min _{x} \bar{f}(x) \text { s.t. } x_{1}<x<x_{2}
$$

（2）非线性规划优化器：（无约来最小忧风器）
$x=f \min \operatorname{search}\left(0-f u n, x_{0}\right)$ ：x_{0} 为接索起点

$$
x=\text { fiminunc }\left(\operatorname{sifun}, x_{0}\right) \quad: \min _{x} f(x)
$$

＊$X=$ patiernsearch（ofun，x_{0} ）
（3）非负最小二乐曲线拟含问题优仪器：

$$
\begin{aligned}
x & =\text { dsqnonneg }(c, d) \\
& : \min _{x}\|C x-d\|^{2}, \text { where } x \geqslant 0
\end{aligned}
$$

III，伏化算法：Optimization Algorithm．
i）Nonlinear Optimization．：nolinearfurtion：Qfun．
（1）Unconstrained Ontimization
$\min f(x), f(x)$ is a fion retoon scalar
x, x is a vector or matitix．
：$x=f_{\text {minsearch（ofun，}, x_{0} \text { ）}}$
$x=f \min u n c$（ \otimes fuin，x_{0} ）
（2）Constrained Optimization．
a．$x=f_{\text {min }}$ bnd（ Δ fin $, x_{r}, x_{2}$ ）

$$
\min _{x} f(x) \text { s.t. } x_{1}<x<x_{2}
$$

＊$b, x=f_{\min } \operatorname{con}\left(a b f u n, X_{0}, A, b, A_{\text {eq }}, b_{e q}, l b, u b\right.$, nonlion）
SQP．

$$
\min _{x} f(x) \text {.s.t. }:\left\{\begin{array}{l}
C(x) \leq 0 \\
C \text { eq }(x)=0
\end{array}\right\rangle \text { nonlcon }=\text { on } n!\text { fun }
$$

C．$x=f$ seminf（＠fun，X_{0}, num，seminfforn，A, b, Aeq，beq，（la，ub）

$$
\min f(x) \cdot s \cdot t_{i}:\left\{\begin{array}{l}
A x \leq 1 \\
A_{e q} x=b_{e q} \\
N_{b} \leq x \leq u b \\
C(x) \in 0 \\
C_{e q}(x)=0, y \\
K_{i}(x, v i) \leq 0,1 \leq i \leq n d m
\end{array}\right\} \text { num, seminfcon. }
$$

（3）Multiobjective Optimaization．
$a, ~ x=f$ goalattain（Oafun，X_{0} ，god，weight，A, b, A Ae，，beq，（b），

$$
\min _{x, \gamma}, \gamma, \text { s.t. }=\left\{\begin{array}{l}
f(x)-\text { weight } \cdot \gamma \leqslant \text { gral ub, nonkion }) . \\
C(x) \in 0 \\
C \text { eq }(x)=0 \\
\text { A. } x \leqslant b \\
\text { Aeq. } x=b_{\text {eq }} \\
u_{b} \leqslant x \leqslant u b .
\end{array}\right.
$$

b．$x=f_{\text {mini }} \max (Q A f w, x, A, b$, Aeq．beq，lb，ub，nonlcon）

$$
(c(x) \leq 0
$$

$$
\min _{x} \max _{i} f_{i}(x) . s . \frac{1}{t}=\left\{\begin{array}{l}
C_{\text {eq }}(x)=0 \\
A x \leqslant b \\
A_{\text {eq }} x=b_{e q} \\
l b \leq x \leq b_{b} .
\end{array}\right.
$$

＊： $\max _{x} \min _{i} f_{i}(x)=-\min _{x} \max _{i}\left(-f_{i}(x)\right)$
ii）Prosiramming．（Linear Optimzation）．
a．Linear Programing．

$$
X=\operatorname{linprog}(f, A, b, \text { Aeq, beq, }(b, u b)
$$

$$
\min _{x} f^{\top} \cdot x \text { s.t: }:\left\{\begin{array}{l}
A x \leq b \\
\text { Aeq. } X=b e q \\
U_{b} \leq x \leq u_{b}
\end{array}\right.
$$

b．Quadratic Progtarming．LL：S

$$
\begin{aligned}
& X=\text { quad prog }(H, f, A, b, \text { Aeq, beq, } 1 b, U b \\
& \min _{X} \frac{1}{2} X^{\top} H x+f^{\top} X, \text { s.t.: }:\left\{\begin{array}{l}
A x \leq b \\
\text { Aeq } x=\text { beq. } \\
\\
L_{b} \leq x \leq w b .
\end{array}\right.
\end{aligned}
$$

c．problem－based Optimization

$$
\begin{gathered}
\text { sol }=\text { solve }\left(\text { prob, } x_{0}\right) . \\
\text { prob }=\operatorname{gtimproblem} \\
x=\operatorname{optimvar}\left({ }^{\prime} x^{\prime}\right), \ldots
\end{gathered}
$$

prob．Objective $=-x-y / 3$ ；\＃fum．砤镉形．

$$
\text { Sol = solve (prob, } x_{0} \text {). }
$$

iii）Least Squares．
a．Linear Least Squares：min\｜$\|x-d\|^{2}$ ，with $\int_{\text {bands }}^{\text {lin cost }}$

$$
\begin{aligned}
-X & =\operatorname{lsq} \text { nonneg }(c, d) \\
& \min _{x}\|C x-d\|^{2} \text {,st:ix>0 } \quad \text { cid real. }
\end{aligned}
$$

$$
-X=l s q \operatorname{lin}\left(c, d, A, b, A e q, b e q,\left(b, u b, X_{0}\right)\right.
$$

$$
\min _{x} \frac{1}{2}\|c x-d\|^{2} \text { s.t. }:\left\{\begin{array}{l}
A x \leq b \\
A_{\text {eq }} x=b \text { eq } \\
u b \in x \leq u b
\end{array}\right.
$$

b．Nonlinear least－Squares： $\min \left(\sum\left\|f\left(x_{i}\right)-y_{i}\right\|_{1}^{2}\right)$ ， $\zeta_{n l} \ggg d a t a$ ．
－$x=l$ sq non lin（ofun，$\left.X_{0}, l b, u b\right)$

$$
\min _{x} \sum_{i} f_{i}(x) \text { st. }=u_{b} \leq x \leq u b .
$$

－$x=l$ sq currvefit（coffin，x_{0}, x data,y data $, l b, u b$ ）
$\min \sum_{i}(f(x, x d a t a(i))-y d a t a(i))^{2}$ 用于扷合非线性传过的薮。

